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Internal pressure test for characterizing fast- 
fracture reliability of grinding wheels 
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A constant danger associated with the use of most grinding wheels (vitrified-bond alumina 
and silicon carbide wheels) is the possibility of fracture during operation. A standard practice 
is to subject newly manufactured wheels to a spin test and accept wheels that survive. We 
propose an internal pressure test which offers a simpler, more economical alternative to the 
spin test for testing grinding wheels. Probabilities of failure in the internal pressure test are 
correlated with failure probabilities in the spin test using probabilistic fracture mechanics. Res- 
ults indicate a reasonably good correlation between the two tests, thus demonstrating their 
equivalence. A scheme for the easy implementation of the internal pressure test to detect dam- 
age in grinding wheels is outlined. 

I .  In t roduct ion 
Vitrified-bond abrasive grinding wheels have been the 
workhorses of the grinding industry for the last few 
decades. A typical vitrified-bond wheel consists (in 
vol % ) of about 50 to 70 % abrasive particles and 15 to 
25% bond material, with voids and cavities compris- 
ing the rest. In many grinding processes, the grinding 
wheel is spun at a high peripheral velocity 
( ~  20 -40ms-1 ) .  The operating speeds have gen- 
erally increased as the strength of the bond has in- 
creased. Higher speeds have improved productivity 
but safety considerations have limited operating 
speeds. Because of high surface speeds, the disintegra- 
tion of a grinding wheel during a grinding operation is 
extremely dangerous and can prove fatal. Like most 
ceramic materials, abrasive wheels are brittle and un- 
able to deform plastically under load. This results in a 
significant scatter in fracture strength [1, 2] and this 
unpredictability is the principal cause of worry. 

Grinding wheel fracture is an old problem and 
efforts have been made on several fronts to tackle it. 
Historically, the use of stronger bonded wheels and 
the provision of wheel guards in grinding machines 
along with conservative spin speeds has been the 
solution of choice [3]. These are not completely satis- 
factory ways to solve the problem since they cannot 
completely eliminate the risk of an accident due to 
wheel failure. A common test used at the 
manufacturer's plant as well as the user's workshs is 
the "ring" test where cracks are detected by moni- 
toring the acoustic tones emitted when the wheel is 
lightly struck. A "dull" note denotes the presence of 
one or more cracks and a "clear" note is presumed to 
be a sign of absence of life-threatening cracks. This 
method relies on the ability and experience of the 
individual monitoring the tones. Probably the most 

crucial test performed to assess the reliability of a 
grinding wheel is the spin test. The spin test involves 
rotating wheels to 1.5 times their rated operating 
speed and categorizing wheels that survive as accept- 
able [3]. The spin test is a proof test and requires a 
significant investment in capital equipment. It is usu- 
ally performed by wheel manufacturers and hardly 
ever by wheel users. Any damage to the grinding wheel 
that occurs during handling or transport from the 
manufacturer to the user is therefore not monitored by 
this test. 

The use of non-destructive techniques has of late 
been the subject of extensive study. A good discussion 
of X-radiographic, ultrasonic and resonance tech- 
niques for detecting cracks in abrasive wheels can be 
found in Smith [4]. Attempts have also been made to 
devise schemes for on-line detection of critical cracks 
[5, 6]. These schemes have not yet been developed to 
the stage where they can perform reliably and con- 
sistently in a realistic grinding situation. 

Non-destructive and in-process crack detection 
techniques have not gained ground because most 
manufacturers and users are of the opinion that cur- 
rent practices during manufacture and recommended 
operating procedures are adequate to ensure the integ- 
rity of grinding wheels. The spin test is a principal part 
of these practices. This paper presents an internal 
pressure test as an alternative to the spin test for 
testing grinding wheels. The proposed test is inexpen- 
sive and can be performed easily at the user end or at 
the manufacturers plant. 

2. I n t e r n a l  p r e s s u r e  t e s t  
Fig. 1 is a schematic diagram of the internal pressure 
test apparatus that was developed for testing grinding 
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Grinding wheel 

Figure 1 Internal pressure test apparatus. 

wheels. The annular bore of the grinding wheel is 
coated with an epoxy adhesive, the thickness of the 
epoxy layer being 4 to 5 mm. The wheel is then moun- 
ted in the apparatus in a manner that allows pre- 
ssurization internally from the bore. The pressurizing 
medium is a liquid such as oil or water. The epoxy 
coating is necessary to prevent the fluid from coming 
in, to direct contact with the hub of the wheel as this 
causes the fluid to leak out under pressure through the 
pores in the grinding wheel. The wheel is loaded to a 
"proof"  pressure that is "equivalent" to the maximum 
speed in the spin test. Wheels that survive are con- 
sidered acceptable for service. We analyse the mech- 
anics of both the spin and the internal pressure tests 
and establish an equivalence between the two in the 
following sections. 

Both tests give rise to a biaxial stress situation in the 
wheel. The stresses in a spinning annular disc are [15] 
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where 0"t is the hoop stress, % is the radial stress, p the 
density, m the spin speed (rads-1),  ~t the Poisson's 
ratio; and r i and r o are, respectively, the internal and 
external radii. The corresponding expressions for an 
annular disc under internal pressure loading are 
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where p is the internal pressure. 
Both tests result in tensile hoop stresses which 

attain a maximum value at the inner radius. But while 
the spinning disc experiences tensile radial stresses, the 
wheel with internal pressure loading is subjected to 
compressive radial stresses which are a maximum at 
the inner radius. The difference in stress situations 
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prevents direct comparisons of the strength values in 
the two tests for establishing the desired "proof pre- 
ssure". Moreover, grinding wheels like most brittle 
materials exhibit a strength variability as a direct 
result of the scatter in size distribution of critical 
strength-controlling flaws. A consequence of this is 
that specimen size and stress state strongly influence 
the fracture strength. Hence the strength of these 
materials cannot be considered a deterministic quant- 
ity but must be characterized statistically. 

3. Theory 
One of the earliest probabilistic approaches used to 
account for the scatter in fracture strength of brittle 
materials was introduced by Weibull [7]. Weibull 
postulated a random distribution of flaws without 
specifying their size or shape. The Weibull approach, 
which is based on the weakest-link theory, was given 
an integral formulation by Vardar and Finnie [-8] for a 
general, non-uniform, multiaxial stress situation 
where failure is governed by a volumetric flaw dis- 
tribution: 

Here Pe is the probability of failure, V the volume of 
the stressed member, d V a volume element, m the 
Weibull modulus, % the normal stress and K a con- 
stant which will be defined shortly. The formulation 
considers only the normal tensile stresses acting on all 
planes at each point in the solid. This leads to the term 
in square brackets in Equation 3 where the integral is 
evaluated on the surface of the unit sphere in Fig. 2, 
only over regions where the normal stress is tensile. 
The normal stress on the surface of the unit sphere, in 
terms of the principal stresses and the polar and 
azimuthal angles, is 

0.n = COS2~D(0.1COS2q / ~- 0"2 s ina i )  

+ 0"3 sin2 ~ (4) 
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Figure 2 Geometric variables used to describe location on a unit 
sphere. 



The constant K in Equation 3 is given by 

2 m +  1 
K - (5) 

2rC(O'ov) m 

where m is the Weibull modulus and CYov the character- 
istic strength. The (2m + 1)/2re term in Equation 5 is a 
compatibility factor required to make the result of 
integrating Equation 3 for uniaxial stress cases agree 
with the results obtained from the one-dimensional 
Weibull equation 

Pf = 1 - exp - dV (6) 

If it is determined that failure of the structure under 
study originates from surface flaws then the foregoing 
expressions have to be modified accordingly [91: 

Pf = 1 - - e x p [ - - f s K ~ f A ( % j m d A d S ]  (7) 

S is the surface of the body, dS an area element, dA the 
area element of the curved surface of the unit disc in 
Fig. 3. The normal stress, cy n, on the curved surface of 
the unit disc in terms of the principal stresses is 

(5" n ~- (YlCOSZq/ + Ozsin2~/  (8) 

The constant K~ is related to m and the characteristic 
surface flaw strength Oo~ by 

K s = [B(m + 0.5, 0.5)(Oo~)~1 ~ (9) 

where B(x, y) is the beta function. 
The Weibull method as described above is intuit- 

ively plausible but is a little arbitrary. It does not 
specify the nature of the flaw causing failure. Batdorf 
and co-workers [10, 111 have proposed that failure 
predictions should be based on a combination of the 
weakestqink approach and linear elastic fracture 
mechanics (LEFM). The Batdorf theory assumes ran- 
dom flaw orientation and a consistent crack geometry. 
The combined probability of the critical flaw being 
within a certain size range and being oriented so that it 
may cause fracture is calculated. Since flaw sizes cor- 
respond to strength levels, the probability of a crack 
existing within a critical strength range is determined. 
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Figure 3 Geometric variables used to describe location on a unit 
disc. 

The component failure probability for volume flaws, 
Pf, is expressed as 

x \  dcYor / V d % r ]  (10) 

where %r, the critical stress, is defined as the remote, 
uniaxial fracture strength of a given crack in mode I 
loading. The solid angle f~(E, CYcr ) is the sphere of 
Fig. 2 containing all the crack orientations for which 
% > % ,  due to the existing stress state E. The effect- 
ive stress, %,  is defined as the equivalent mode I stress 
on the flaw. cy . . . . .  is the maximum effective stress. The 
Batdorf crack density function, Nv(%r), is approxim- 
ated by a power function: 

Nv((~cr ) = kBV(~cr) m (11) 

where the Batdorf volume crack density coefficient kBv 
and Weibull modulus, m, are evaluated from experi- 
mental uniaxial fracture data. Evaluation of the 
Batdorf coefficient requires a fracture criterion and 
specification of a crack shape. A shear-insensitive cri- 
terion is based on the assumption that fracture occurs 
when (3 n = (Ye > I~cr" Such a criterion leads directly to 
the Weibull formulation (Equations 3 and 7) for the 
probability of failure. A shear-sensitive criterion, on 
the other hand, assumes that a shear stress T, applied 
parallel to the crack plane in mode II or mode III, also 
contributes to fracture. In this case the effective stress 
% is a function of both cr, and T. The exact form of 
this function will depend on the fracture criterion and 
crack shape. 

We model the volumetric flaws in grinding wheels 
as penny-shaped cracks. The fracture criterion that is 
used in the subsequent analysis is based on strain 
energy release-rate considerations [111. The following 
expression for the effective stress emerges as a result of 
these assumptions: 

O'n -[- (12) 
eye = (1 - -  0 . 5 ~ 1 )  2 

% is given by Equation 4 and the expression for shear 
stress, T, with reference to Fig. 2 is 

T = [ ( %  - %)212m2 + (cy 2 - c~3)2mZn z 

-t'- (~3 O'1)2 Y/21210"5 (13) 

where l, m and n are the direction cosines of the 
normal to the crack plane. 

For fractures originating from surface flaws (half- 
penny cracks), the Batdorf analysis leads to the follow- 
ing expression for failure probability: 

" f  = 1 -- expl -- fAf2  m~ 2re ) 

(dNs (%r )  
x \  dcyor ) d A d o c r  ] (14) 

where fl is the total arc length on a unit radius circle 
(Fig. 3) for which % > cycr. The cracks are assumed to 
be half-penny cracks with planes normal to the surface 
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and random orientations in the plane of the external 
boundary. The effective stress, rye, is given by Equa- 
tion 12. The surface crack density function, Ns, is 
assumed to be of the same form as N v (Equation 11) 
with a coefficient kBs. 

The standard approach used in failure probability 
predictions of loaded brittle components is to first 
characterize the flaw population with simple uniaxial 
tests (typically four-point bending tests). This flaw 
population is then used to determine failure probabil- 
ities for complex component geometry and loading 
using the analyses outlined above [12-14]. 

T A B L E  I Weibull parameters (Equation 15), confidence limits 
and Kolmogorov-Smirnov test results for vitrified alumina four- 
point bend bar fracture data 

Method of Analysis ML LS 
Weibull modulus, m 9.05 9�9 
90% confidence limits on m 

(lower upper) 5.79-11.75 
Characteristic strength S O (MPa) 12.27 12.26 
90% confidence limits on So 

(lower-upper) 11.61 12.98 - 
Kolmogorov-Smirnov test 

statistic 0.223 0.224 
Significance level ( % ) 39 38 

3. Experimental  results and discussion 
The vitrified-bond aluminium oxide abrasive wheels 
that were tested in this study were designated as 
WA46-I9V9 (Ferro-Electric Corp., Buffalo, New 
York). A number of rectangular bars (20) were sliced 
from a random selection of grinding wheels. These 
bars were then ground to the dimensions of 102 mm 
x 12.7 mm x 12.7 mm. The 20 bar specimens were 

strength-tested in four-point bending (76.2 m m  outer 
span and 25.4 mm inner span) at a crosshead speed of 
0.5 mm min-1. The bending strength (tensile stress at 
the outermost fibre in the inner span at fracture) data 
were analysed using the two-parameter Weibull dis- 
tribution (Fig. 4) 

Pf = 1 - - e x p [  - (%~m]\Soj (15) 

where S o is the characteristic modulus of rupture and 
m is the Weibull modulus. The statistical material 
parameters S O and rn were determined by leastrsquares 
(LS) analysis and by the maximum likelihood method 
(ML). The results are shown in Table I. 90% confid- 
ence intervals were constructed where possible. The 
Kolmogorov-Smirnov test was used to determine the 
goodness of fit of the assumed distributions. The max- 
imum deviation using the ML estimates (m = 9.05, 
So = 12.27 MPa) was 0.223 which corresponds to a 
probability of 39% of such a deviation occurring by 
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Figure4  Weibull strength distributions of vitrified four-point 
bending bars of aluminium oxide�9 
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chance. The corresponding numbers for the LS estim- 
ates (m = 9.35, S o = 12.27 MPa) were 0.224 and 38%, 
respectively. Hence the parameter estimates were con- 
sidered to be acceptable. The LS estimates are used in 
all subsequent analyses. The Weibull scale para- 
meters, C~ov (=2.47 M P a m  TM) of Equation 5 and C~os 
(=3.71 M P a m  TM) of Equation 9, and the Batdorf 
coefficients, knv of Equation 11 and kBs, were deter- 
mined from So, m and the specimen geometry. 

Thirteen grinding wheels, from the same batch as 
used in the bend tests, were spin-tested to failure. 
These wheels had an outer diameter of 254 ram, an 
inner diameter of 85.7 mm and a thickness of 19 m m .  
The Weibull modulus (m) that characterized the spin- 
test fracture data was 10.02, which compares well with 
m = 9.35 (LS) from the bending strength data. The 
experimental probability of failure in the spin test is 
shown plotted against the spin speed in Fig. 5. Also 
shown in this figure are the predicted probabilities of 
failure in the spin test determined using the bend- 
strength data of Fig. 4. It was hard to establish from 
the fractured wheels as to whether fracture originated 
from a volume or a surface flaw. This was the case with 
the bend-strength specimens too. Because of this un- 
certainty, failure probabilities were computed separ- 
ately for a critical volume flaw assumption (Fig. 5a) 
and for a critical surface flaw assumption (Fig. 5b). 

Fig. 5a shows two computed failure curves along- 
side the experimental curve. The curve defined by 
square symbols was computed assuming (i) that frac- 
ture was caused by volume flaws and (ii) a shear- 
insensitive (Weibull approach) fracture criterion 
(Equation 3). The curve defined by triangular symbols 
was obtained with the shear-sensitive criterion of Bat- 
dorf (Equation 10) with ~ defined by Equation 12. 
Fig. 5b shows the corresponding curves for the surface 
flaw assumption. Equation 7 was used to  compute 
failure probabilities for surface flaw-dominated frac- 
ture with the Weibull approach and Equation 14 was 
used for the Batdorf (shear-sensitive) approach. 

Sixteen wheels from the same batch as used earlier 
were loaded to failure using the internal pressure 
apparatus of Fig. 1. Fig. 6 shows the distribution of 
the experimental fracture pressures in a typical Wei- 
bull plot. The fracture pressures in Fig. 6 have been 
corrected for the 4 mm thick epoxy layer on the inner 
diameter of the grinding wheels. The same experi- 
mental data are presented as a failure probability 
curve in Fig. 7 (circular symbols). Fig. 7a also shows 
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Figure 5 Comparison of experimental failure probabilities with pre- 
dicted failure probabilities, using four-point bend-strength data, for 
grinding wheels subjected to the spin test: (a) volume flaw analysis, 
(b) surface flaw analysis. (Q) Weibull approach, (A) Batdorf ap- 
proach, (�9 experimental. 
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Figure 7 Comparison of experimental failure probabilities with pre- 
dicted failure probabilities, using four-point bend-strength data, for 
failure in the internal pressure test: (a) volume flaw analysis, (b) 
surface flaw analysis. {El) Weibull, (A) Batdorf, (�9 experimental. 

failure probability curves for the internal pressure test, 
computed using bending-strength data and based on 
the assumption that volume flaws caused fracture. The 
results based on a surface-flaw assumption are pre- 
sented in Fig. 7b. 

From Figs 5a, 5b, 7a and 7b it is apparent that the 
difference between the predictions of the shear-insens- 
itive and shear-sensitive criteria is minimal. The shear- 
sensitive criterion is slightly more conservative. From 
the figures it is also apparent that predictions based on 
the bending-strength data fall short of the experi- 
mental probability curves irrespective of the critical 
flaw type (volume or surface) assumption. 

The foregoing analysis and figures have all been 
based on the crucial assumption that the bend bars 
and the grinding wheels have essentially the same 
strength-controlling flaw populations. It is quite likely 
that this assumption is erroneous. The bend bars were 
sliced from grinding wheels and were ground before 
being fractured. Each of these processes introduces 
defects that could change the nature of the flaw popu- 
lation. If that is the case, predictions of failure in the 
spin or the internal pressure test using bend-strength 
results will be erroneous. However, the wheels used in 
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Figure 8 Comparison of experimental failure probabilities with pre- 
dicted probabilities, using spin-test failure data, in the internal 
pressure test: (a) volume flaw analysis, (b) surface flaw analysis. ([])  
Weibull, (A) Batdorf, ((3) experimental. 

both the spin test and the internal pressure test were 
produced in the same batch and should therefore have 
the same flaw populations. Hence it should be possible 
to deduce flaw population characteristics (Weibull 
and/or Batdorf parameters) from spin-test fracture 
data and use these characteristics to predict failure in 
the internal pressure test. The results of such an ana- 
lysis are shown in Fig. 8a (volume flaws) and Fig. 8b 
(surface flaws). The spin test does underpredict failure 
probabilities in the internal pressure test but the differ- 
ences are not as extreme as in Figs 5 and 7. 

One possible source for the disagreement is the 
fairly small sample sizes used in both tests (13 in the 
spin test and 16 in the internal pressure test). Another 
factor that contributes to the error is the epoxy coated 
on the insides of the wheels prior to subjecting them to 
the internal pressure test. As stated earlier, the epoxy is 
necessary to prevent leakage through the pores of the 
grinding wheel. While the experimentally measured 
pressures have been corrected to take into account the 
epoxy layer for estimating the true pressure acting at 
the inner wheel radius, the correction has been made 
on the assumption that the epoxy layer is of uniform 
thickness. In practice this is not the case. Given these 
potential sources of error it is reasonable to state that 
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on the basis of the results in Fig. 8, failure in the spin 
test correlates reasonably well with failure in the inter- 
nal pressure test. The experimental 50% failure pre- 
ssure in the internal pressure test is within 15% of the 
predicted (from spin-test results) 50% failure pressure. 
This being the case, the internal pressure test can be 
used in lieu of the spin test to test grinding wheels. An 
equivalent "proof  pressure" can be derived corres- 
ponding to a given "proof  speed" in the spin test. The 
"proof  pressure" will have the saine probability of 
failure as the "proof  speed" used in the spin test 
(usually 1.5 times the designed operating speed). 

It should be emphasized that the internal pressure 
test does not require any destruction of or changes in 
the grinding wheel. It is true that a coating of epoxy 
was applied to the internal hub of the grinding wheel 
in the internal pressure test. In practice this need not 
be the case. We have constructed an internal pressure 
fixture consisting of a thin-walled diaphragm which 
can be inserted into the bore of the wheel. Pressure is 
applied to the bore wall by means of this diaphragm. 
The need for an epoxy coating is thus eliminated. 
Validation experiments to develop a standardized 
proof test using this new fixture are currently in 
progress. 

4. C o n c l u s i o n s  
The internal pressure test has been developed as an 
alternative to the spin test for testing fast-fracture 
reliability of grinding wheels. Four-point bend 
strength tests were used to characterize the flaw popu- 
lations in the grinding wheels. These flaw populations 
were then used to predict failure in the spin test and 
the internal pressure test. The differences in the predic- 
tions based on shear-insensitive (Weibull) and shear- 
sensitive (Batdorf) criteria were found to be very 
small. The four-point bend strength data were found 
to underpredict failures in both tests, thus casting 
doubt on the assumption of identical flaw popula- 
tions. However, failure probabilities in the internal 
pressure test, derived from the spin-test fracture data, 
were in reasonably good agreement with experimental 
results. Hence the internal pressure test is equivalent 
to the spin test for determining the fast-fracture reli- 
ability of grinding wheels. The internal pressure test is 
simple and economical (unlike the spin test) and can 
be performed by both wheel manufacturers and users. 
It does not require any destruction of or changes to 
the grinding wheel, especially when an internal 
metal/rubber diaphragm is used to apply the pressure 
to the hub of the wheel. 
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